PRECISION VOLTAGE REGULATOR

■ GENERAL DESCRIPTION

The NJM723 is a Precision Monolithic Voltage Regulator. The device consists of a temperature-compensated Voltage reference, error amplefier, power-series pass transistor and current-limit circuitry. Additional NPN or PNP pass elements may be used when output currents exceeding 150mA are required. In addition to the above, the device features low standby current drain, low temperature drift and high ripple rejection. The NJM723 is intended for use with positive or negative supplies as a series, shunt, switching of floating instrument power supplies, and other power supplies for digital and linear circuits.

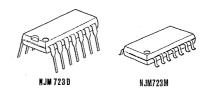
FEATURES

- Operating Voltage (12V~40V)
- 150mA output current without external pass transistor
- Output currents in excess of 10A posible by adding external
- Input voltage 40V max
- Output voltage adjustable from 2V to 37V
- · Can be used as either a linear or a switching regulator.
- Package Outline

DIP14, DMP14, SSOP14

Bipolar Technology

■ PACKAGE OUTLINE

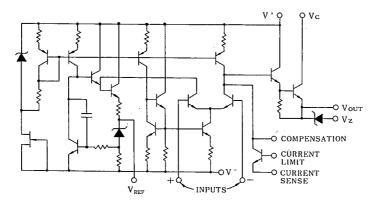

NC Vz

 V_{out}

 $V_{\rm e}$

14 NC

COMP



PIN CONFIGURATION

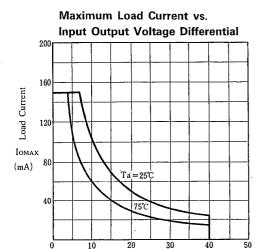
(-\subsection)		1 NC		8
∃2	13	2	Current Limit	9
⊒₃	12	.3	Current Sense	10
□4	11	4	- Input	11
□5	10	5	+ Input	12
□6	9	6	V_{REF}	13-

NJM723D NJM723M NJM723V

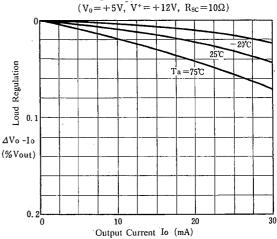
■ EQUIVALENT CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

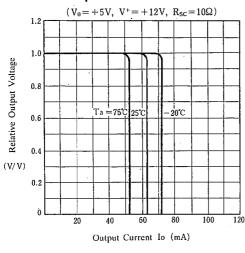

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voitage	V+/V-	40	V
Drpout Voltage	ΔVio	40	٧
Differential Input Voltage	V _{IN} (diff)	±5	V
Output Current	Io	150	mA
Power Dissipation	Рь	(DIP8) 700 (DMP8) 700(note) (SSOP8) 450(note)	mW mW mW
Current from V _{REF}	Iref (Vref)	15	mA
Operating Temperature Range	Topr	-20~+75	${\mathbb C}$
Storage Temperature Range	Tstg	-40~+125	°C

(note) At on PC board

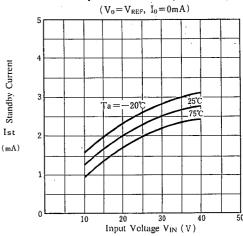

■ ELECTRICAL CHARACTERISTICS (Ta=25°C, V+=Vc=12V, V-=0V, Vo=5V, Rsc=0, CI=100pF, Crep=0, IL=1mA)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Line Regulation	$\Delta V_O - V_{IN}$	V _{IN} =12~15V		0.01	0.1	%V _{OUT}
		$V_{IN} = 12 \sim 40 \text{ V}$	_	0.1	0.5	%Уочт
Load Regulation	$\Delta V_0 - I_0$	I _O =1~50mA		0.03	0.2	%Уост
Ripple Rejection	RR	f=50~10kHz, C _{REF} =0	_	74	_	dB
		f=50~10kHz, C _{REF} =5μF	_	86	<u> </u>	dB
Average Temperature Coefficient						
of Output Voltage	$\Delta V_O/\Delta T$	-20≦Ta≤75°C	_	0.003	0.018	%/°C
Short Circuit Current Limit	I _{CL}	$R_{sc}=10\Omega$, $V_{OUT}=0$		65	_	mA
Reference Voltage	VREF		6.8	7.15	7.5	V
Output Noise Voltage	V _{NO}	BW=100Hz \sim 10kHz, $C_{RF}=0$	_	100	_	$\mu V_{\rm rms}$
		BW=100Hz~10kHz, $C_{RF} = 5\mu F$		2.5		$\mu V_{\rm rms}$
Dropout Voltage	VIO		3.0	_	38	v
Standby Current Drain	ISTOBY	$I_{L}=0, V_{IN}=30V, V_{O}=V_{REF}$		2.3	4.0	mA
Input Voltage Range	VIN		9.5	-	40	V -
Output Voltage Range	Vo		2.0	_	37	V

■ TYPICAL APPLICATION

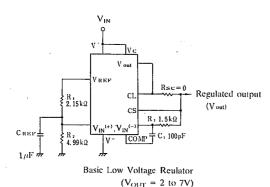


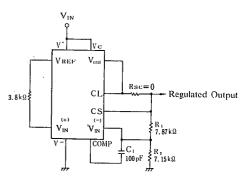
Load Regulation vs. Output Current



Relative Output Voltage vs. **Output Current**

Input Output Voltage Differential \(\Delta V 10 \) (V)




Standby Current vs. Input Voltage

Standby Current

■ TYPICAL CHARACTERISTICS

Basic High Voltage Regulator ($V_{OUT} = 7$ to 37V)

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.